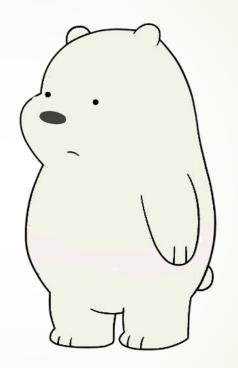
"Un tú por tú, en el análisis de datos"

Pandas Vs Polars



Pythonistas GDL

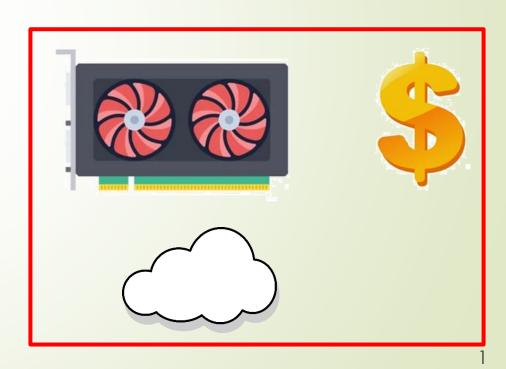
- ·charlas
- ·comida
- ·convivencia
- sorpresas

Patrocinado por

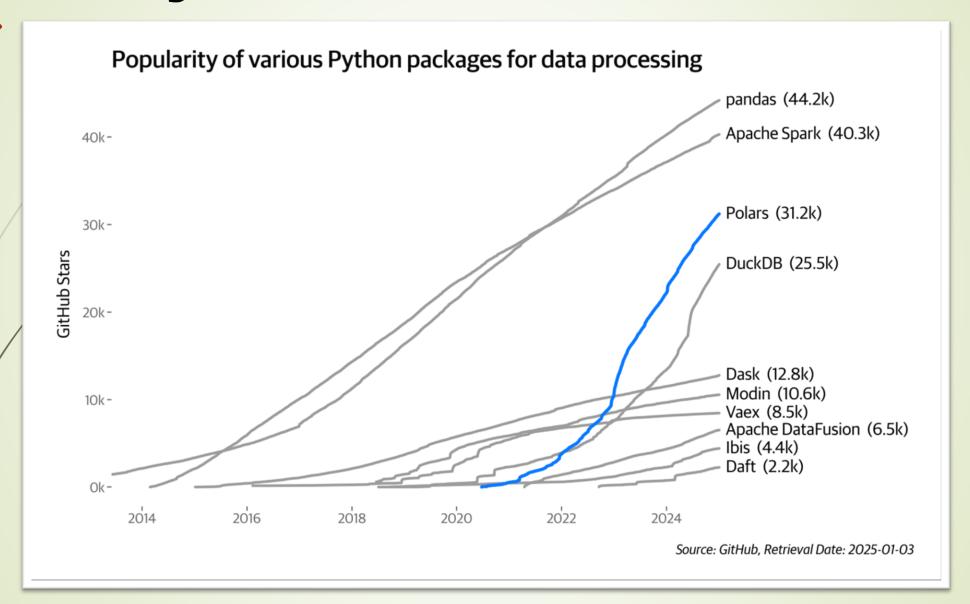
Agenda

- Definición y Contextualización del Problema
- Núcleo Funcional de Pandas
- Comparativa de Librerías
- Comparativa de Rendimiento entre Librerías
- Ejecutando Pandas y Polars
- Egger vs Lazy Frames
- Memoria RAM
- → Conclusión
- Preguntas y Respuestas

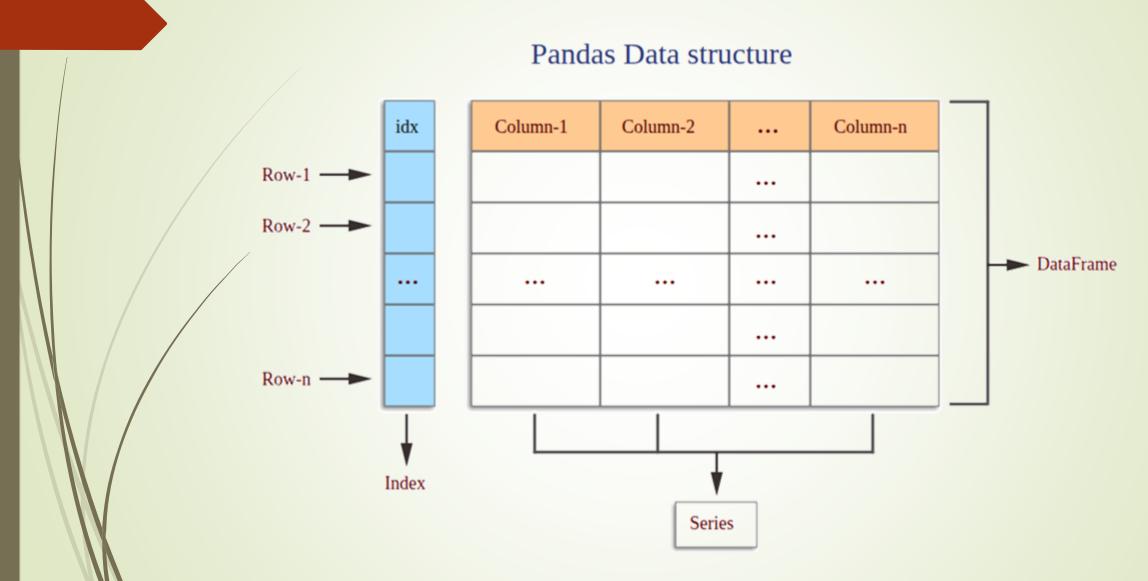
Definición y Contextualización del Problema



Definición y Contextualización del Problema



Núcleo Funcional de Pandas



Comparativa de Librerías

Software

Wes Mckinney 2008

Pandas	Polars
Pandas DataFrame	Polars DataFrame
Numpy	Polar Series
Python-dateutil	Polars Datetime
Tzdata	Polars Time Zone
Analisis Temporal	Analisis Temporal
Lectura/Escritura de	Lectura/Escritura de
Archivos	Archivos
csv,excel,parquet	csv,excel,parquet
No disponible	Lazy Frame

Rust + Apache Arrow

Ritchie Vink 2020

Hardware Pandas

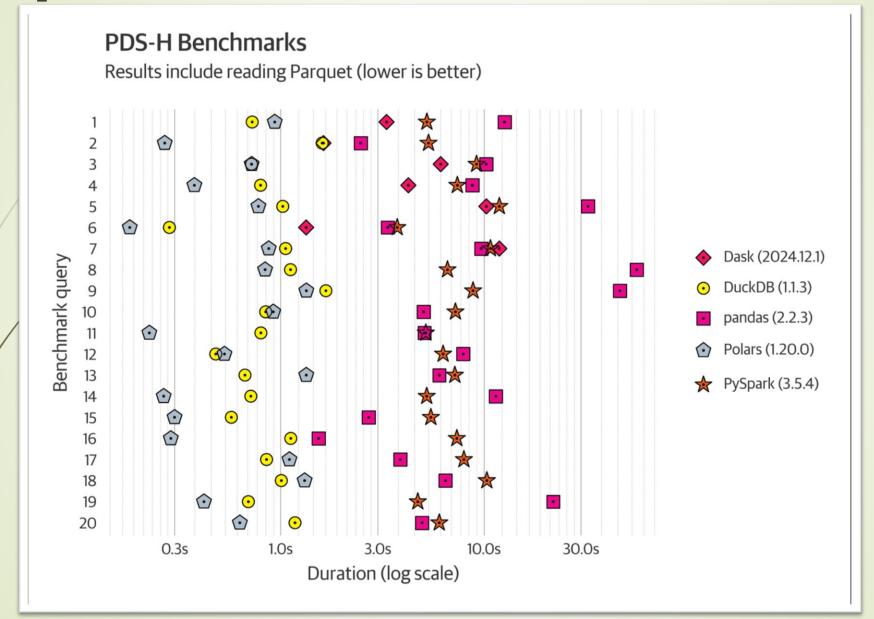
Polars Operations No usa múltiples núcleos Ejecución Paralela de CPU por defecto Automática No tiene soporte nativo para GPU Diseño Eficiente en CPU No escala bien datasets mayores a 1Gb Escalamiento horizontal Alto Consumo de Bajo Consumo de

Memoria

Backend Python +C

Memoria

Comparativa de Rendimiento de Librerías



```
import pandas as pd
import polars as pl
import sys
animals_pd = pd.read_csv("data/animals.csv", sep=",", header=0)
animals_pl = pl.read_csv("data/animals.csv", separator=",", has_header=True)
print(sys.getsizeof(animals_pd)) # Tamaño en bytes del objeto 'x'
print(sys.getsizeof(animals_pl)) # Tamaño en bytes del objeto 'x'
print(f"{type(animals_pd) = }")
print(f"{type(animals_pl) = }")
 3830
 48
 type(animals_pd) = <class 'pandas.core.frame.DataFrame'>
 type(animals_pl) = <class 'polars.dataframe.frame.DataFrame'>
```

Pandas

Polars

		animal	‡	class	÷	habitat	‡	diet	‡	lifespan	¢	status	‡	features	÷	weight	÷
	0	dolphin		mammal		oceans/rivers		carnivore			40	least concern		high intelligence			150.0
ш	1	duck		bird		wetlands		omnivore			8	least concern		waterproof feathers			3.0
ш	2	elephant		mammal		savannah		herbivore			60	endangered		large ears and trunk			8000.0
ш	3	ibis		bird		wetlands		omnivore			16	least concern		long, curved bill			1.0
ш	4	impala		mammal		savannah		herbivore			12	least concern		long, curved horns			70.0
ш	5	kudu		mammal		savannah		herbivore			15	least concern		spiral horns			250.0
ш	6	narwhal		mammal		arctic ocean		carnivore			40	near threatened		long, spiral tusk			NaN
ш	7	panda		mammal		forests		herbivore			20	vulnerable		black and white coloration			100.0
	8	polar bear		mammal		arctic		carnivore			25	vulnerable		thick fur and blubber			720.0
1	9	ray		fish		oceans		carnivore			20	NaN		flat, disc-shaped body			90.0

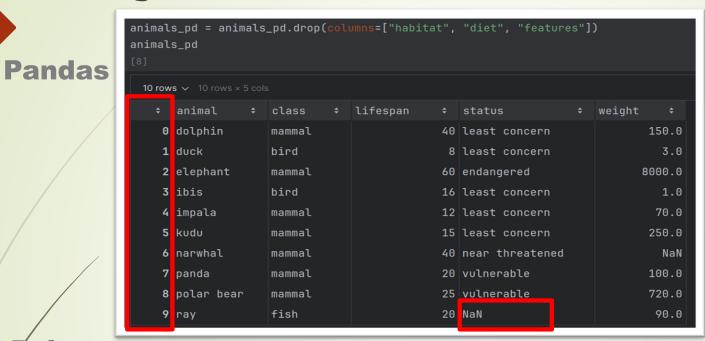
ш	animal	‡	class	‡	habitat	‡	diet ÷	lifespan	‡	status	‡	features	÷ 1	weight	‡
Ш	"dolphin"		"mammal"		"oceans/rivers"		"carnivore"		40	"least concern"		"high intelligence"	1	150	
Ш	"duck"		"bird"		"wetlands"		"omnivore"		8	"least concern"		"waterproof feathers"	3	3	
	"elephant"		"mammal"		"savannah"		"herbivore"		60	"endangered"		"large ears and trunk"	8	8000	
Ш	"ibis"		"bird"		"wetlands"		"omnivore"		16	"least concern"		"long, curved bill"	1	1	
Ш	"impala"		"mammal"		"savannah"		"herbivore"		12	"least concern"		"long, curved horns"	5	70	
Ш	"kudu"		"mammal"		"savannah"		"herbivore"		15	"least concern"		"spiral horns"	2	250	
Ш	"narwhal"		"mammal"		"arctic ocean"		"carnivore"		40	"near threatened	"	"long, spiral tusk"	r	null	
Ш	"panda"		"mammal"		"forests"		"herbivore"		20	"vulnerable"		"black and white coloration"	1	100	
П	"polar bear"		"mammal"		"arctic"		"carnivore"		25	"vulnerable"		"thick fur and blubber"	7	720	
Ш	"ray"		"fish"		"oceans"		"carnivore"		20	1111		"flat, disc-shaped body"	ç	90	

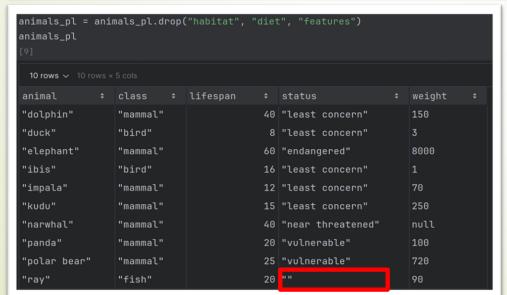
Pandas

```
animals_pd["animal"]
         dolphin
            duck
        elephant
 3
            ibis
          impala
            kudu
         narwhal
           panda
      polar bear
             ray
 Name: animal, dtype: object
```

Polars

```
animals_pl.get_column("animal")
  10 rows ∨ 10 rows × 1 cols
animal
"dolphin"
"duck"
"elephant"
"ibis"
"impala"
"kudu"
"narwhal"
"panda"
"polar bear"
"ray"
```





Eager vs LazyFrames

```
lazy_query = (
    pl.scan_csv("data/animals.csv")
        .group_by("class")
        .agg(pl.col("weight").mean())
        .filter(pl.col("class") == "mammal")
)
```

```
lazy_query.show_graph(optimized=False)

/ [3] 67ms

FILTER BY [(col("class")) == ("mammal")]

AGG [col("weight").mean()]
BY
[col("class")]

Csv SCAN [data/animals.csv]
π */8;
```

```
Lazy_query.show_graph()

/[4] 36ms

AGG [col("weight").mean()]
BY
[col("class")]

Csv SCAN [data/animals.csv]
π 2/8;
σ [(col("class")) == ("mammal")]
```

Eager vs LazyFrames

```
%%time
trips = pl.read_parquet("data/taxi/yellow_tripdata_*.parquet")
sum_per_vendor = trips.group_by("VendorID").sum()
income_per_distance_per_vendor = sum_per_vendor.select(
    "VendorID",
    income_per_distance=pl.col("total_amount") / pl.col("trip_distance")
top_three = income_per_distance_per_vendor.sort(
   by="income_per_distance", descending=True
).head(3)
top_three
 CPU times: user 10.2 s, sys: 2.89 s, total: 13 s
 Wall time: 1.27 s
```

Eager vs LazyFrames

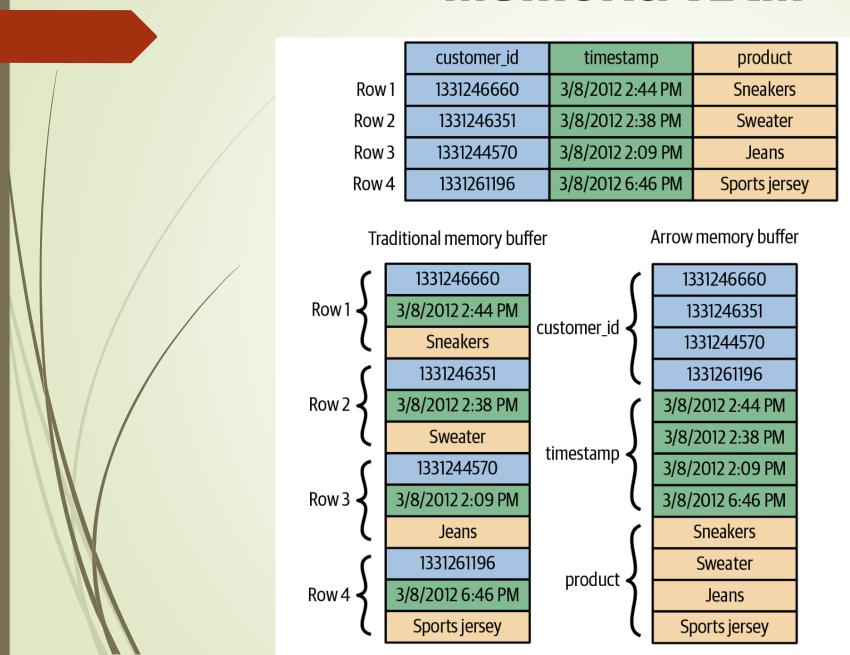
```
%%time
trips = pl.scan_parquet("data/taxi/yellow_tripdata_*.parquet")
sum_per_vendor = trips.group_by("VendorID").sum()

income_per_distance_per_vendor = sum_per_vendor.select(
    "VendorID",
    income_per_distance=pl.col("total_amount") / pl.col("trip_distance"),
)

top_three = income_per_distance_per_vendor.sort(
    by="income_per_distance", descending=True
).head(3)
print(top_three.describe())
top_three.collect()
```

str	f64	f64
count	3.0	3.0
null_count	0.0	0.0
mean	4.0	5.487613
std	2.645751	0.867551
min	1.0	4.731557
25%	5.0	5.296493
50%	5.0	5.296493
75%	6.0	6.434789
max	6.0	6.434789
CPU times: use	er 3.94 s,	sys: 46.6 ms, total 3.99 s
Wall time: 432	2 ms	

Memoria RAM



Conclusión

- Pandas es ideal para tareas educativas, prototipos rápidos, análisis exploratorio con data sets no mayores a 1Gb
- Polars es mejor en rendimiento para grandes volúmenes de datos con mejoras en operaciones de filtrado y manipulación de datos
- Sin embargo se puede adoptar una estrategia hibrida.

Preguntas y Respuestas

Redes Sociales

in migueltlapa

